
Quality of Service on Gigabit Ethernet for Event Builder

Y.Yasu1, Y.Nagasaka2,Yoji.Hasegawa3, A.Manabe1,
M.Nomachi4, H.Fujii1, Y.Watase1

1 High Energy Accelerator Research Organization (KEK), Japan
2 Nagasaki Institute of Applied Science (NIAS), Japan

3, Shinshu University, Japan
4 Osaka University, Japan

Abstract
Congestion avoidance techniques for event builders

using switching network technologies is a major issue.
Traffic management of the data flow is an essential point
to avoid congestion. Global traffic control is one of the
mechanisms to manage the traffic. It uses global
information of the switching network. While, traffic
shaping technique is another mechanism not to use them.

Quality of Service (QoS) is one of the solutions to
avoid this congestion, because it provides the bandwidth
allocation in the network. A Gigabit Ethernet technology,
which is a major in the high performance network,
however, has no functionality of the QoS while ATM has
the functionality of the QoS on a hardware level. Recently,
IP-based QoS is intensively studied in computer science.
On Gigabit Ethernet with the QoS, it will be expected to
avoid the congestion of the event builder traffic.

We used Alteon network interface card, which can
handle large Maximum Transmission Unit (MTU) called
jumbo frame. Jumbo frame improves the transfer speed.
We also used Linux-based PCs for measuring the
performance. We chose several parameters such as device
driver parameters, MTU, chipset for PC, bus width of PCI
(64/32-bit) and so on, related to the performance.

We found high performance chipset for PC and 64-bit
PCI bus improved the transfer speed in TCP/IP up to
990Mbit/s with jumbo frame. We had the results that the
overhead of the IP-based QoS is very small and the
bandwidth allocation worked.

I. INTRODUCTION

In an event builder, event fragments from all sources
are concentrated coherently into one destination via a
switching network. However, commercial-available
switching networks are designed for random traffic like
Tele-communication data. They may not be able to
handle coherent traffic like event builder. Congestion
avoidance is indispensable for switch type event builder.

A way to avoid the congestion is to establish a global
traffic control. A circuit switch was applied to an event
builder at Fermilab [1] and KEK [2]. The data traffic is
controlled by a global traffic signal. Another way is to
design data flow by allocating the bandwidth for each node
in a switching network. The RD31 project at CERN
established a way to shape traffic on ATM network[3,4].
An other way to solve the problem is over-provisioning of
the switching network, but we do not mention it.

Gigabit Ethernet is one of the technologies, which enables
a high-speed transfer for the event builder. It is prefer-able to
use industrial standard equipment for the event builder if
possible, in order to reduce the cost of development and ease
maintenance. Gigabit Ethernet is fully compatible with
existing Ethernet installation, which is not only an
international standard but also de facto standard. TCP/IP as
candidate software for the data path also has the same
advantages.

Thus, we investigated the feasibility of the QoS on Gigabit
Ethernet, which is a way to design data flow by allocating
bandwidth.

A. Requirements and Gigabit Ethernet with QoS
Latency of packet routing as low as possible is better for

event builder, but the latency is not critical. Thus, high level
protocol such as TCP/IP with QoS may be used. On the other
hand, Gigabit Ethernet technology with jumbo frame was
investigated [5,13] because the throughput is critical. It
showed that jumbo frame doubled the transfer speed. It is
expected that use of the jumbo frame works well for the event
builder.

Recent Gigabit Ethernet companies guarantee “ wire
speed” at each port while the possibility of the congestion at
burst data flow still remains within a switch. It is not clear to
guarantee�the speed on a coherent traffic. It is expected that
Gigabit Ethernet with QoS shapes the traffic in a way to avoid
congestion.

The next section describes congestion control and
bandwidth allocation in Linux. 3 section describes the
performance measurement of Gigabit Ethernet with QoS on
PC/Linux.

II. CONGESTION CONTROL AND BANDWIDTH
ALLOCATION

In TCP/IP, delayed ACK is a traffic control method to
reduce unnecessary packets, by acknowledging multiple
packets with a single ACK. The Nagle algorithm packs short
messages to avoid congestion. Traffic control can be done by
controlling the TCP sliding window size. However, it is not
clear that those algorithms are enough to avoid the congestion
on event builder.

Researches and developments of QoS are recently done for
Internet application, in environments LAN and WAN. Internet
Engineering Task Force (IETF) is working on terminology
and architecture of QoS. It defined Resource ReSerVation
Protocol (RSVP) [7] for multimedia application such as Voice

over IP and Video on demand. The essential point of
traffic management is packet scheduling, known as
queueing method. PC-based scheduling mechanism is
studied in computer science [8,9]. Packet queueing
disciplines are studied in techniques related to ATM in
computer science. They are Class-Based Queueing (CBQ),
Token Bucket Filter (TBF) and so on.

A. Terminology of QoS
We introduce elementary technologies of QoS first.

There are admission control, packet classification, packet
scheduling and traffic shaping. The admission control is a
way to control reserving resources in a session such as
RSVP. A setup protocol makes signaling on the path.
Figure 1 shows Class-Based Queueing discipline. The
packet classification is to classify incoming packets into
groups called class.

Figure 1: Class-Based Queueing
The packet scheduler is to arrange the scheduling for

outgoing packets. There are many ways according to the
queueing method and the buffer management. Figure 2
shows Token Bucket Filter as an example of a packet-
scheduling algorithm. The outgoing packet will be sent
according to the size of the token buffer and the rate. The
traffic shaper is a technique to make the burst data flat.

Figure 2. Token Bucket Filter

B. Traffic Management in Linux
For Linux, kernel 2.2.x and later support many kinds

of QoS [10]. The developer toolkit also supplies some
commands for manipulating the parameters in the kernel
[11]. The typical command is called tc. Figure 3 shows a
traffic control in TCP/IP for Linux. The traffic control is
done only at the output queueing.

Figure 3. Traffic control in TCP/IP
The Linux kernel supports CBQ queueing discipline

and TBF queueing discipline. Figure 4 is an example of

queueing discipline for Linux. It defines a queueing
discipline, CBQ as root with bandwidth 1000Mbit/s.
When a packet comes into the queueing discipline, the
packet will be sent to a classifier called u32, which
classifies the packet. The packet will come into a class
called CBQ, which also assigns 1000Mbit/s as the
bandwidth. After the packet passes through the class, a
queueing discipline called TBF will limit the transfer rate.
The transfer rate will be limited to 100Mbit/s according to
the rate of the token even if packet arrives over the rate.

Figure 4. Queueing Disciplines for Linux

III. PERFORMANCE EVALUATION

A. Measurement
On the measurement of transfer speed, we evaluated the

transfer speed on three frequencies of CPU, three types of
chipset, and on 64/32-bit PCI. We also measured copy
speed of memory on the PCs.

On the measurement of QoS, we evaluated 1x1, 1x3
and 3x1 systems with QoS. We used TBF in CBQ for
allocating transfer rate.

Before the measurements, we tuned network driver and
TCP buffer size. We evaluated TCP buffer size. The value
of 528288 was best. We had evaluated Nagle algorithm
[13] and then adopted Nagle algorithm for the
measurement.

We used the netperf utility [14] as the measurement
tool to evaluate performance at point-to-point link.

B. Setup
The configuration of the PCs is shown in Table 1. We

used three types of PCs. A pair of PC733 and a pair of
PC800 were used for the evaluation of transfer speed. Four
PCs of PC500 were used with a Gigabit Ethernet switch
for the evaluation of QoS and transfer speed. The switch
we used was Alteon AceSW180 [6], which has 9 ports of
Gigabit Ethernet with 8Gbit/s backplane. Linux driver for
AceNIC was used [12].

Table 1. Configuration of PC500, PC733 and PC800
System PC500 PC733 PC800

CPU type PentiumIII PentiumIII PentiumIII

CPU Freq. 500MHz 733MHz 800MHz

Cache 512KB 256KB 256KB

Chipset 440GX SuperWorks
ServerSet III LE

440BX

Bus speed 100MHz 133MHz 100MHz

Memory type SDRAM SDRAM SDRAM

Memory size 256MB 128MB 256MB

PCI(Bus width) 32-bit 64/32-bit 32-bit

OS version 2.2.14-12 2.2.14-12 2.2.14-5

gcc version egcs-2.91.66 egcs-2.91.66 egcs-2.91.66

NIC AceNIC(1MB) AceNIC(1MB) AceNIC(1MB)

Driver version v0.47 v0.47 v0.47

C. Copy speed of memory
We measured the copy speed of memory on the PCs

by using a Linux system call, memcpy. The speed
depends on CPU speed and performance of chipset. High
performance memory copy is crucial to obtain high
bandwidth using TCP/IP.

0

50

100

150

200

250

300

350

400

450

500

0.1 1 10 100

PentiumIII-
733MHz/SuperWorks
PentiumIII-
500MHz/440GX
PentiumIII-
800MHz/440BX

Data size in MB

Copy speed in MB/s

Figure 5. Performance of memory copy
PC733 was the fastest because it has a high

performance chipset.

D. Tuning Network Driver
The parameters in the driver code were tuned to get the

best performance. We have modified and tested the
parameters with regard to coalescing. The coalescing
affects the times of interrupts to CPU from the NIC. We
varied the following two parameters tx_coal on the
transmitting side and rx_coal on the receiving side. When
the value of the parameter is small, the interrupt time
increases. We tuned those parameters for normal frame
and jumbo frame in Table 2.

Table 2. tx_coal and rx_coal for normal and jumbo frames
tx_coal rx_coal

Normal (best/default) 996/400 1000/120

Jumbo(best/default) 200/20 300/30

We varied the values of tx_coal and rx_coal parameters.
In normal frame, which means MTU equals 1500, the pair
of values for tx_coal/rx_coal, 40/12, 400/120, 996/1000
and 2000/2000 were chosen for the evaluation.

0

100

200

300

400

500

600

700

800

900

1000

0.01 1 100 10000

tx=400:rx=120
tx=996:rx=1000
tx=2000:rx=2000
tx=40:rx=12

Message size in KB

Transfer speed in Mbit/s

Figure 6. Transfer speed between PC500s in normal frame
Figure 6 shows the transfer speed on PC500s in normal
frame. At the values of 996/1000 and 2000/2000, the
transfer speed was better in comparison with that at default
values. We chose the value of 996/1000, which is
recommended by the developer.

Figure 7 shows the transfer speed in jumbo frame,
which means MTU equals 9000. At values of 200/300,
the transfer speed was better in comparison with that at
default values.

0

100

200

300

400

500

600

700

800

900

1000

0.01 1 100 10000

tx=20:rx=30
tx=200:rx=300
tx=400:rx=600
tx=2:rx=3

Message size in KB

Transfer speed in Mbit/s

Figure 7. Transfer speed between PC500s in Jumbo frame
Thus, we chose 996/1000 in tx_coal/rx_coal for

normal frame and 200/300 in tx_coal/rx_coal for jumbo
frame. We confirmed that the feature was similar on
PC733s and PC800s.

Figure 8 shows the transfer speed on PC500s, PC733s
and PC800s in case of MTU1500. The speed did not
depend on CPU speed.

0

100

200

300

400

500

600

700

800

900

1000

0.01 1 100 10000

Pentium500MHz

Pentium733MHz
Pentium800MHz

Message size in KB

Transfer speed in Mbit/s

Figure 8. Transfer speed in normal frame on various PCs
However, the transfer speed with jumbo frame changed

the feature. PC800 with highest performance CPU and
worst chipset had poor performance while PC733 with
highest performance chipset was best. Figure 9 shows the
result.

0

100

200

300

400

500

600

700

800

900

1000

0.01 1 100 10000

Pentium500MHz
Pentium733MHz

Pentium800MHz

Message size in KB

Transfer speed in Mbit/s

Figure 9. Transfer speed in jumbo frame on various PCs

E. 64-bit PCI vs. 32-bit PCI
We evaluated transfer speed on 64-bit PCI. Figure 10

shows the transfer speed on PC733s in cases of 64-bit PCI
and 32-bit PCI. At MTU1500, the transfer speed with 32-
bit PCI was similar to that with 64-bit PCI. However, the
transfer speed with 64-bit PCI was better to that with 32-
bit PCI at MTU9000. The speed reached to 990Mbit/s.

0

100

200

300

400

500

600

700

800

900

1000

0.01 1 100 10000

32-bit PCI(mtu1500)

64-bit PCI(mtu1500)

32-bit PCI(mtu9000)
64-bit PCI(mtu9000)

Message size in KB

Transfer speed in Mbit/s

Figure 10. 64-bit PCI vs. 32-bit PCI for transfer speed

F. QoS performance on 1x1 system
The QoS was adopted at source node. The rate was

assigned by TBF. With the QoS, the measured rate
showed that the bandwidth allocation worked well.
Furthermore, the CPU overhead of QoS was very small
and nearly 1%.

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Ideal rate

Measured rate

No-QoS

Assigned rate in Mbit/s

Measured rate in Mbit/s

Figure 11. QoS performance on 1x1 system

G. QoS performance on 1x3 system
The rate was also assigned by TBF. Namely, TBF

limits the transfer to each destination node at source node.
With the QoS, the measured rate showed that the
bandwidth allocation worked at small rate, but did not
work well at full rate. Furthermore, the transfer speed
without QoS at each destination node exceeds 200Mbit/s
and the speed to each destination was nearly identified.

0

50

100

150

200

250

0 50 100 150 200 250

Ideal rate

Measured rate on node1

Measured rate on node2

Measured rate on node3

No-QoS

Assigned rate in Mbit/s

Measured rate in Mbit/s

Figure 12. QoS performance on 1x3 system

H. QoS performance on 3x1 system
The rate was also assigned by TBF. Namely, TBF

limits the transfer to each destination node at source nodes.
With the QoS, the measured rate showed that the
bandwidth allocation worked well.

0

50

100

150

200

250

0 50 100 150 200 250

Ideal rate
Measured rate on node1

Measured rate on node2
Measured rate on node3

No-QoS

Assigned rate in Mbit/s

Measured rate in Mbit/s

Figure 13. QoS performance on 3x1 system

IV. CONCLUSION

The traffic management of event data flow is necessary
for the event builder. We investigated another solution of
the traffic management using IP-based QoS on PC/Linux
instead of ATM-based traffic management.

On the evaluation of basic performance with Gigabit
Ethernet on PC/Linux, we tuned the network driver and
then measured the transfer speed with various types of
CPU and chipset, and 64-bit PCI. The result showed that
the transfer speed did not depend on CPU speed in normal
frame. It also showed that high performance chipset, 64-bit
PCI and jumbo frame were effective and necessary to get
best performance.

On the evaluation of the QoS, transfer rate assignment
was possible by using tc command, but it did not make
clear that the QoS on Gigabit Ethernet was effective for
event builder.

V. ACKNOWLEDGMENTS

The authors wish to thank Prof. Takahiko Kondo at
KEK for his support and encouragement, Dr. Hiroyuki
Sato at KEK for his help, and people of Netone Systems
Corporation and Alteon Web Systems in Japan for their
help.

V. REFERENCES

[1] Ed. Basotti et al., A Proposed Scalable Parallel Open
Architecture Data Acquisition System for Low to
High Rate Experiments, Test Beam and All SSC
Detectors, IEEE Trans. NS, Vol.37, No.3 (1990)

[2] Y.Nagasaka et al., Performance Analysis of a Switch-
type Event Builder with Global Traffic Control
System, IEEE Trans. NS, Vol.43, No.1(1996)

[3] D.Calvet et al., Evaluation of a Congestion
Avoidance Scheme and Implementation on ATM
Network based Event Builders, Proc. Second
International Data Acquisition Workshop on
Networked Data Acquisition Systems, Osaka, Japan,
13-15, November 1996, World Scientific Publishing
1997, pp.96-107.

[4] D.Calvet et al., Operation and Performance of an
ATM based Demonstrator for the Sequential Option
of the ATLAS Trigger, IEEE Trans. NS, Vol.45,
No.4(1998)

[5] Y.Yasu at al., Evaluation of Gigabit Ethernet with
Java/HORB, Contributed to the International
Conference on Computing in High Energy Physics,
CHEP98, Chicago, August 31 - September 4, 1998

[6] Home page of Alteon Web Systems,
http://www.alteonwebsystems.com/

[7] R.Braden, L.Zhang, S.Berson, S.Herzog and
S.Jamin, Resource ReSerVation Protocol (RSVP) –
Version1 Functional Specification, RFC2205.

[8] S.Floyd and V.Jacobson, Link-sharing and Resource
Management Models for Packet Networks,
IEEE/ACM Transactions on Networking, Vol.3
No.4, August 1995

[9] K.Cho, A Framework for Alternate Queueing:
Towards Traffic Management by PC-UNIX Based
Routers, Proceedings of USENIX 1998 Annual
Technical Conference, New Orleans LA, June 1998

[10] Alexey Kuznetsov, Implementation of queuing
disciplines in Linux kernel. They are available in
Linux kernel 2.2.x. http://www.linuxhq.com/

[11] Alexey Kuznetsov, tc command is available.
ftp://ftp.inr.ac.ru/ip-routing/

[12] Jes Sorensen, Linux device driver for AceNIC,
http://home.cern.ch/~jes/gige/acenic.html

[13] Yoji Hasegawa, Yasushi Nagasaka, Yoshiji Yasu,
DAQ/EF-1 Event Builder system on Linux/Gigabit
Ethernet, ATL-DAQ2000-008, March 2000

[14] Netperf Home page,

http://www.netperf.org/netperf/NetperfPage.html

