
Control of large scale 
distributed DAQ/trigger systems 

in the networked PC era 
Toby Burnett
Kareem Kazkaz
Gordon Watts

DAQ2000 Workshop
Nuclear Science Symposium and 
Medical Imaging Conference
October 20, 2000

Gennady Briskin
Michel Clements
Dave Cutts
Sean Mattingly



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

2

DD

The Trigger Environment
• Pressure on the Trigger

– Shorter decision times required
– More complex algorithms
– More algorithms
– More Data

• Hardware Triggers
– Inflexible, dedicated
– Hard to change as accelerator condition change
– FPGAs: Hardware moving into firmware.
– (but) Well understood

• Cheap Commodity Components 
– High speed networks
– Cheap memory
– Cheap CPU power as never before

• The ERA of the PC Based Trigger
– Farms of Triggers where traditional hardware exists

• BTeV – very little in the way of a HW trigger

Hardware
Based

Triggers

Software
Based

Triggers
Speed!Speed!



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

3

DD

Farm Based Triggers/DAQ

• Control Code
– Management
– Configuration
– Monitoring
– Error Recovery

• DAQ Code
– Controls DAQ components
– Network Control & Routing 

for farm
• Physics Code

– Performs actual trigger 
decision

– Frequently interfaces with 
others

DAQ 
Node

DAQ 
Node

DAQ 
Node

Control 
Node

Control 
Node

Physics Code

Farm Node

Physics Code

Farm Node

Physics Code

Farm Node

Physics Code

Farm Node

Physics Code

Farm Node

Physics Code

Farm Node

All code, except the control code, is independent of each otherAll code, except the control code, is independent of each other

Passed 
Raw 
Data

Raw 
Data



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

4

DD

Control

• Configuration Tasks
– Management

• Interface with other 
parts of Online 
System

• Resource Management
• Controls other 

components
– Configuration

• Event Routing
• Farm Partitions

– Multiple Runs
• Trigger Code
• DAQ parameters

– Monitoring
• System Performance
• Resource Usage
• RT Debugging 

(hardware & software)
– Error Recovery

• Asynchronous and 
synchronous errors

• Crashed nodes!
• On the fly 

reconfiguration
– Must decide if 

possible!
• Diagnostic information 

for shifters & experts



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

5

DD

The Environment:
Distributed Run Control

• Run Control – Farm Interaction 
changing
– Simple RC program used to handle 

whole DAQ/Trigger system
• FECs, Trigger, DAQ, etc.

– DØ Run 1: RC was complex
– DØ Run 2: To complex for a single

RC.
• L3 (Farm) Supervisor has more 

responsibility
– Hides farm implementation details 

from RC.
• Black box for the rest of the online 

system
– More flexibility in how the 

Trigger/DAQ system is managed.

Run Control
(run #1, trigger list, 10 farm nodes)

Level 3 Supervisor
(trigger list, specific nodes,

readout components, routing)

Readout Component
(routing)

Farm Node
(trigger list)

DistributedDistributed

– Components can fail in way that 
doesn’t bring down the run

– A node crash
– Allows it to recover from errors in 

farm and DAQ without having to 
involve RC when possible



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

6

DD

Design of Supervisor

• Goals
– Configuration

• Effectively manage transitions from one state to another
– running, paused, new run, etc.

• A large number of separate entities must be controlled
• Speed issues

– Recovery, short accelerator times between shots, etc.
– Recovery

• Physics code will change through out life of experiment
– Test Test Test!
– Will still have crashes & explosions

• One of the few systems that can suffer a major component 
failure and not terminate a run!

• State Diagrams – standard approach
– Use a state definition language to define each transition in 

the farm
• Reconfiguration requests that don’t change the global state
• Difficult to deal with exception conditions, asynchronous errors.

Super



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

7

DD

The Ideal State
• Maintain an ideal state

– Ideal state is built only if RC 
commands make sense

– Eliminates erroneous input
– Prevents leaving the farm in 

an unknown state due to a RC 
failure

• There is a mapping from an 
ideal state to a Hardware 
State/configuration

• Maintain Actual State
– Comparison between ideal and 

actual generates commands
• Did a RC Configuration Change 

Succeed?
– Are the Actual and Ideal 

states close enough to report 
success?

Ideal Run 
Control 
State

RC Commands 
and 

Specification

Ideal L3 
Hardware 

State

Actual L3 
Hardware 

State

Component 
Command 
Generator

Components 
Execute 

Commands (or 
fail)



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

8

DD

Faults & Errors
• Ultimate goal is 100% uptime; 0% trigger deadtime!
• Faults are rarely predictable.

– Hardware: Always knew every input and output
– In software, this is no longer always true

• Two classes
– Catastrophes

• Whole Farm Crashes, on every event
• Critical Readout component fails to configure correctly

– Minor errors
• Low grade crashes

– In Run 1 we lost the use of our build system due to a licensing issue 
for a short while: had to deal with a farm crash once per 20 
minutes.

• Non-critical component fails to configure
• Failure Mode Analysis

– Will tell you the most likely failures
– And the places that a failure will do the most damage.
– Helps to focus error recovery efforts

Still need humans!Still need humans!



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

9

DD

Farm Node Failures
• Separate the physics 

code from the Framework 
and Control Code
– Physics code changes 

over life of the 
experiment

– Separate memory space
– Assure that data back 

from the Filter Process 
is not interpreted by 
Framework at all

• Blindly handed off to 
Tape

– Automatically restart a 
dead filter process

• Or start debugger on it 
without interrupting 
other filter processes

Farm Node

Framework

Filter 
Process

Filter 
Process

Filter 
Process

(~1 per CPU)

A Special Case RecoveryA Special Case Recovery
indicated by a failure mode analysis

Can crash 
and 

recover
crash detection
& recovery code



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

10

DD

General Recovery

• At Failure
– Supervisor is notified of the failure
– The Actual State is updated to reflect the failure

• There is an understanding of what constitutes a minimal working 
L3 system

• Stop Run is issued if this test isn’t satisfied.

• Recovery
– Notify Shifter of problem, or
– Measure current state against ideal state and re-issue 

commands
• Will repair broken device/node
• Reconfigure the farm (expensive)
• Type of failure can effect the hardware state

– Means special recovery commands can be automatically generated
• Repeated Failure Detection should be implemented
• No need to notify RC
• Accounting (trigger information)



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

11

DD

Local/Global Fault Detection
• Local

– Timeout from command, etc.
– Explicitly designed detection in control code
– Must be careful to track the source of the error and 

record it in the Actual State
– real-time detection
– Similar to old-time hardware faults

• Know exactly where the fault occurred
• Limited number of fault types
• Specific – simpler for computers to handle directly.

• Global
– Single monitor point can’t determine sickness
– Global Monitoring is crucial for this
– Useful to help diagnose problems for the shifters

• Recommend solutions?
• One day… it will go farther!

– Input to rule based system??
– Detection isn’t on an event-by-event basis



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

12

DD

Flexible Monitoring

• Monitoring
– XML Based
– Generic WEB front-end

• take advantage of 
commodity software 
market!

– Drop-in Aggregate Filters.
– Displays query via http 

requests
• Cross platform
• SOAP?
• Custom designed displays 

(graphics) or simple static 
web pages

– Use actual program in 
limited circumstances

– Interface for rule-based 
system??

Source1 Source2 Source3

Monitor Process
XML DB1 Filter1

Filter2

Display 1 Display 2

XML DB2

XML DB2

Every 5 
seconds

Java?Java?



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

13

DD

Putting It Together

• No reason for a display to be 
the only consumer for Monitor 
Information

• Intelligent process can watch 
for known patterns
– Good

• Look for correct running 
patterns, warning when they 
aren’t present

– Bad:
• Look for known bad patters, 

warning when they are present, 
perhaps taking automatic action, 
even.

• Rule based system
– Difficult to maintain.
– Would like a snap-shot feature

Monitor Process

XML DB1 Filter1

Filter2

Monitor

XML DB2

XML DB2

Farm Super

Run Control

DAQ Diagnostic 
Displays

Control Room



Control of 
large scale 
distributed 

DAQ/trigger 
systems in the 
networked PC 

era

Gordon 
Watts

gwatts@
u.washington.edu

University of
Washington,

Seattle

DAQ2000
NSS2000

Oct 20, 2000

14

DD

Conclusions
• PC Based DAQ/Trigger

– Large component count
– Uptime must be almost 100% for each component
– Software bugs are a reality
– Approach system design in a unified way

• A General Approach Means
– Flexible system
– Ease of extension

• Hooks for adding monitor and other capabilities, for example.
• Hooks to deal with many error situations one can expect to encounter 

over 10 years of running.
– Failure Mode Analysis

• This Requires
– Robust, extensible Monitoring
– Extensible Control System

• Can handle addition of error conditions at a later time
– Software infrastructure to tie the two together
– Being aware of shifters!


