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Introduction to LHCb

q Special purpose experiment to 
measure precisely CP violation 
parameters in the BB system

q Detector is a single-arm 
spectrometer with one dipole

q Total b-quark production rate is 
~75 kHz

q Expected rate from inelastic p-p 
collisions is ~15 MHz

q Branching ratios of interesting 
channels range between 10-5-10-4 

giving interesting physics rate of 
~5 Hz

Number of Channels ~1.1 M
Bunch crossing rate 40 MHz
Level-0 accept rate 1 MHz
Level-1 accept rate 40 kHz
Readout Rate 40 kHz
Event Size 150 kB
Event Building Bandwidth 6 GB/s
Level-2 accept rate ~5 kHz
Level-3 accept rate ~200 Hz
Level-2/3 CPU Power 100 kSI95
Data rate to Storage ~50 MB/s

LHCb in Numbers
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LHCb Detector
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Typical Interesting Event
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Trigger/DAQ Architecture
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L1 trigger system

q Provide common and 
synchronous clock to all 
components needing it

q Provide Level-0 and 
Level-1 trigger decisions

q Provide commands 
synchronous in all 
components (Resets)

q Provide Trigger hold-off 
capabilities in case 
buffers are getting full

q Provide support for 
partitioning 
(Switches, ORs)

Timing and Fast Control



Beat Jost, Cern 8DAQ 2000, Lyon, October 20 2000

Level-1 Trigger
q Purpose

ã Select events with detached 
secondary vertices

q Algorithm
ã Based on special geometry of vertex 

detector (r-stations, ϕ-stations)
ã Several steps

å track reconstruction in 2 dimensions 
(r-z)

å determination of primary vertex
å search for tracks with large impact 

parameter relative to primary vertex
å full 3 dimensional reconstruction of 

those tracks

q Expect rate reduction by factor 25
q Technical Problems: 1 MHz input rate, 

~4 GB/s data rate, small event 
fragments, Latency restrictions

SN

SN

SN

SN

SN

SN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

CN

Basic Idea:
Network interconnecting the 
computing nodes of a processor 
farm to the data sources



Beat Jost, Cern 9DAQ 2000, Lyon, October 20 2000

Level-1 Trigger (2)
Implementation

ã ~32 sources to a network
ã Algorithm running in processors (~200 CPUs)
ã In principle very similar to DAQ, however the input rate of 1 MHz 

poses special problems.
ã Current studies centered around an SCI based torus topology

å Simulation of system was done
å First tests show that data can be written to SCI at 1.5 MHz

Dimensional routing (first x then y).

At any given time not more than one 
SN must send its data to a certain 
torus column (see matching color in 
the sketch).

-> need for traffic-shaping
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DAQ Functional Components
q Readout Units (RUs)/Front-End Multiplexers (FEM)

ã Multiplex input links (Slink) onto 
Readout Network links (RU) or Slink (FEM)

ã Merge input fragments to one output fragment
q Subfarm Controllers (SFCs)

ã assemble event fragments arriving 
from RUs to complete events and send 
them to one of the CPUs connected

ã dynamic load balancing among the 
CPUs connected

q Readout Network
ã provide connectivity between 

RUs and SFCs for event-building
ã provide necessary bandwidth 

(6 GB/sec sustained)
q CPU farm

ã execute the high level trigger algorithms 
ã execute reconstruction algorithm 
ã Processing needs: ~100 kSI95, i.e. ~1000 processors 

Note: There is no central 
event manager
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RU/FEM Architecture

As FEM
ã 16:1 Multiplexer/EB
ã Minimal/No Buffering
ã SLink Output
ã no output blocking

As RU
ã 4:1 Multiplexer/EB
ã significant buffering
ã Output to RN
ã possible output blocking
ã ~1.5 MHz sub-event 

building performance
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Sub-Farm Architecture
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SFC Architecture

‘Standard’ PC
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Event-Building Network
q Requirements

ã 6 GB/s sustained bandwidth
ã scalable
ã expandable
ã ~120 inputs (RUs)
ã ~120 outputs (SFCs)
ã affordable and if possible commercial (COTS, Commodity?)

q Readout Protocol
ã Pure push-through protocol of complete events to one CPU of the farm
ã Destination assignment following identical algorithm in all RUs (belonging 

to one partition) based on event number 
Ú Simple hardware and software
Ú No central control → perfect scalability
Ú Full flexibility for high-level trigger algorithms
Ø Larger bandwidth needed (+~50%) compared with phased event-building
Ø Avoiding buffer overflows via ‘throttle’ to trigger
± Only static load balancing between RUs and SFCs



Beat Jost, Cern 15DAQ 2000, Lyon, October 20 2000

Event-Building Activities (to date)

q Studied Myrinet
ã Tested NIC event-building
ã simulated switching fabric of the 

size suitable for LHCb
Results show that switching network 
could be implemented (provided 
buffers are added between levels of 
switches)

q Currently focussing on xGb Ethernet
ã Studying smart NICs (-> Niko’s talk)
ã Possible switch configuration for 

LHCb with ~today’s technology 
(to be simulated...)
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Controls System
Common integrated controls system

ã Detector controls (classical ‘slow control’)
å High voltage
å Low voltage
å Crates
å Alarm generation and handling
å etc. 

ã DAQ controls
å Classical RUN control
å Setup and configuration of all components 

(FE, Trigger, DAQ, CPU Farm, Trigger algorithms,...)
å Consequent and rigorous separation of controls and DAQ path

Same system for both functions!
Scale: ~100-200 Control PCs
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ECS interface to electronics

q Three solutions
ã No radiation (counting room): 

Ethernet to credit card PC on modules
Local bus: Parallel bus, I2C, JTAG

ã Low level radiation (cavern):
10Mbits/s custom serial LVDS twisted pair
SEU immune antifuse based FPGA interface chip
Local bus: Parallel bus, I2C, JTAG

ã High level radiation (inside detectors):
CCU control system made for CMS tracker
Radiation hard, SEU immune, bypass
Local bus: Parallel bus, I2C, JTAG

Credit
card
PC

JTAG
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Par

Serial
slave

JTAG
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ParMaster

PC

Master

PC
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Summary

q LHCb is a special purpose experiment to study CP violation
q Triggering poses special challenges

ã Similarity between inelastic p-p interactions and events with B-Mesons

q DAQ is designed with simplicity and maintainability in mind
ã Push protocol throughout the system

Ô Simple, e.g. No central event manager in the event builder
Ô no backward communication and definitely no lateral communication
Ô Slightly harder bandwidth requirements on readout network (~1.5 times)

ã We are convinced that readout network can be realized at reasonable 
cost

q Unified approach to Controls
ã Same basic infrastructure for detector controls and DAQ controls
ã Both aspects completely integrated but operationally independent
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Event-Building Network Simulation

q Simulated technology: Myrinet
ã Nominal 1.28 Gb/s
ã Xon/Xoff flow control
ã Switches:

åideal cross-bar
å8x8 maximum size (currently)
åwormhole routing
åsource routing
åNo buffering inside switches

q Software used: Ptolemy discrete 
event framework

q Realistic traffic patterns 
ã variable event sizes 
ã event building traffic
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Network Simulation Results (Myrinet)

Switch Size Fifo Size Switching
Levels

Efficiency

8x8 NA 1 52.5%

32x32 0 2 37.3%

32x32 256 kB 2 51.8%

64x64 0 2 38.5%

64x64 256 kB 2 51.4%

96x96 0 3 27.6%

96x96 256 kB 3 50.7%

128x128 0 3 27.5%

128x128 256 kB 3 51.5%

Results don’t depend strongly on specific technology 
(Myrinet), but rather on characteristics (flow control, 
buffering, internal speed, etc)

FIFO buffers  between switching levels allow to recover scalability
50 % efficiency “Law of nature” for these characteristics
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Front-End Electronics

q Data Buffering for Level-0 
latency

q Data Buffering for Level-1 
latency

q Digitization and Zero 
Suppression

q Front-end Multiplexing 
onto Front-end links

q Push of data to next higher 
stage of the readout 
(DAQ)


